116 research outputs found

    The nuclear Schiff moment and time invariance violation in atoms

    Get PDF
    Parity and time invariance violating (P,T-odd) nuclear forces produce P,T-odd nuclear moments. In turn, these moments can induce electric dipole moments (EDMs) in atoms through the mixing of electron wavefunctions of opposite parity. The nuclear EDM is screened by atomic electrons. The EDM of an atom with closed electron subshells is induced by the nuclear Schiff moment. Previously the interaction with the Schiff moment has been defined for a point-like nucleus. No problems arise with the calculation of the electron matrix element of this interaction as long as the electrons are considered to be non-relativistic. However, a more realistic model obviously involves a nucleus of finite-size and relativistic electrons. In this work we have calculated the finite nuclear-size and relativistic corrections to the Schiff moment. The relativistic corrections originate from the electron wavefunctions and are incorporated into a ``nuclear'' moment, which we term the local dipole moment. For mercury these corrections amount to about 25%. We have found that the natural generalization of the electrostatic potential of the Schiff moment for a finite-size nucleus corresponds to an electric field distribution which, inside the nucleus, is well approximated as constant and directed along the nuclear spin, and outside the nucleus is zero. Also in this work the plutonium atomic EDM is estimated.Comment: 16 pages, 1 figure, minor misprints correcte

    The anapole moment and nucleon weak interactions

    Get PDF
    From the recent measurement of parity nonconservation (PNC) in the Cs atom we have extracted the constant of the nuclear spin dependent electron-nucleon PNC interaction, κ=0.442(63)\kappa = 0.442 (63); the anapole moment constant, κa=0.364(62)\kappa_a = 0.364 (62); the strength of the PNC proton-nucleus potential, gp=7.3±1.2(exp.)±1.5(theor.)g_p = 7.3 \pm 1.2 (exp.) \pm 1.5 (theor.); the π\pi-meson-nucleon interaction constant, fπhπ1=[9.5±2.1(exp.)±3.5(theor.)]×107f_\pi \equiv h_\pi^{1} = [9.5 \pm 2.1 (exp.) \pm 3.5 (theor.)] \times 10^{-7}; and the strength of the neutron-nucleus potential, gn=1.7±0.8(exp.)±1.3(theor.)g_n = -1.7 \pm 0.8 (exp.) \pm 1.3 (theor.).Comment: Uses RevTex, 12 pages. We have added an explanation of the effect of finite nuclear siz

    Unconventional decay law for excited states in closed many-body systems

    Get PDF
    We study the time evolution of an initially excited many-body state in a finite system of interacting Fermi-particles in the situation when the interaction gives rise to the ``chaotic'' structure of compound states. This situation is generic for highly excited many-particle states in quantum systems, such as heavy nuclei, complex atoms, quantum dots, spin systems, and quantum computers. For a strong interaction the leading term for the return probability W(t)W(t) has the form W(t)exp(ΔE2t2)W(t)\simeq \exp (-\Delta_E^2t^2) with ΔE2\Delta_E^2 as the variance of the strength function. The conventional exponential linear dependence W(t)=Cexp(Γt)W(t)=C\exp (-\Gamma t) formally arises for a very large time. However, the prefactor CC turns out to be exponentially large, thus resulting in a strong difference from the conventional estimate for W(t)W(t).Comment: RevTex, 4 pages including 1 eps-figur

    Electron recombination with multicharged ions via chaotic many-electron states

    Get PDF
    We show that a dense spectrum of chaotic multiply-excited eigenstates can play a major role in collision processes involving many-electron multicharged ions. A statistical theory based on chaotic properties of the eigenstates enables one to obtain relevant energy-averaged cross sections in terms of sums over single-electron orbitals. Our calculation of the low-energy electron recombination of Au25+^{25+} shows that the resonant process is 200 times more intense than direct radiative recombination, which explains the recent experimental results of Hoffknecht {\em et al.} [J. Phys. B {\bf 31}, 2415 (1998)].Comment: 9 pages, including 1 figure, REVTe

    Effects of T- and P-odd weak nucleon interaction in nuclei: renormalizations due to residual strong interaction, matrix elements between compound states and their correlations with P-violating matrix elements

    Full text link
    Manifestations of P-,T-odd weak interaction between nucleons in nucleus are considered. Renormalization of this interaction due to residual strong interaction is studied. Mean squared matrix elements of P-,T-odd weak interaction between compound states are calculated. Correlators between P-,T-odd and P-odd, T-even weak interaction matrix elements between compound states are considered and estimates for these quantities are obtained.Comment: Submitted to Phys. Rev. C; 21 pages, REVTEX 3, no figure

    Calculation of nuclear spin-dependent parity-nonconserving amplitude for (7s,F=4) --> (7s,F=5) transition in Fr

    Get PDF
    Many-body calculation of nuclear spin-dependent parity-nonconserving amplitude for (7s,F=4) --> (7s,F=5) transition between hyperfine sublevels of the ground state of 211^{211}Fr is carried out. The final result is <7s,F=5 ||d_PNC|| 7s,F=4> = -0.49 10^{-10} i kappa a.u., where kappa is the dimensionless coupling constant. This is approximately an order of magnitude larger than similar amplitude in Cs. The dominant contribution to kappa is associated with the anapole moment of the nucleus.Comment: 4 pages, submitted to Phys.Rev.

    Calculation of parity and time invariance violation in the radium atom

    Get PDF
    Parity (P) and time (T) invariance violating effects in the Ra atom are strongly enhanced due to close states of opposite parity, the large nuclear charge Z and the collective nature of P,T-odd nuclear moments. We have performed calculations of the atomic electric dipole moments (EDM) produced by the electron EDM and the nuclear magnetic quadrupole and Schiff moments. We have also calculated the effects of parity non-conservation produced by the nuclear anapole moment and the weak charge. Our results show that as a rule the values of these effects are much larger than those considered so far in other atoms (enhancement is up to 10^5 times).Comment: 18 pages; LaTeX; Submitted to Phys. Rev.

    Dense spectrum of resonances and particle capture in a near-black-hole metric

    Get PDF
    We show that a quantum scalar particle in the gravitational field of a massive body of radius R which slightly exceeds the Schwarzschild radius r_s, possesses a dense spectrum of narrow resonances. Their lifetimes and density tend to infinity in the limit R -> r_s. We determine the cross section of the particle capture into these resonances and show that it is equal to the absorption cross section for a Schwarzschild black hole. Thus, a non-singular static metric acquires black-hole properties before the actual formation of a black hole.Comment: 6 pages, 6 figures, accepted for publication in Physical Review

    Structure of wavefunctions in (1+2)-body random matrix ensembles

    Full text link
    Abstrtact: Random matrix ensembles defined by a mean-field one-body plus a chaos generating random two-body interaction (called embedded ensembles of (1+2)-body interactions) predict for wavefunctions, in the chaotic domain, an essentially one parameter Gaussian forms for the energy dependence of the number of principal components NPC and the localization length {\boldmath l}_H (defined by information entropy), which are two important measures of chaos in finite interacting many particle systems. Numerical embedded ensemble calculations and nuclear shell model results, for NPC and {\boldmath l}_H, are compared with the theory. These analysis clearly point out that for realistic finite interacting many particle systems, in the chaotic domain, wavefunction structure is given by (1+2)-body embedded random matrix ensembles.Comment: 20 pages, 3 figures (1a-c, 2a-b, 3a-c), prepared for the invited talk given in the international conference on `Perspectives in Theoretical Physics', held at Physical Research Laboratory, Ahmedabad during January 8-12, 200

    Limits on the monopole magnetic field from measurements of the electric dipole moments of atoms, molecules and the neutron

    Full text link
    A radial magnetic field can induce a time invariance violating electric dipole moment (EDM) in quantum systems. The EDMs of the Tl, Cs, Xe and Hg atoms and the neutron that are produced by such a field are estimated. The contributions of such a field to the constants, χ\chi of the T,P-odd interactions χeNs/s\chi_e {\bf N} \cdot {\bf s}/s and χNNI/I\chi_N {\bf N} \cdot {\bf I}/I are also estimated for the TlF, HgF and YbF molecules (where s{\bf s} (I{\bf I}) is the electron (nuclear) spin and N{\bf N} is the molecular axis). The best limit on the contact monopole field can be obtained from the measured value of the Tl EDM. The possibility of such a field being produced from polarization of the vacuum of electrically charged magnetic monopoles (dyons) by a Coulomb field is discussed, as well as the limit on these dyons. An alternative mechanism involves chromomagnetic and chromoelectric fields in QCD.Comment: Uses RevTex, 16 pages, 4 postscript figures. An explanation of why there is no orbital contribution to the EDM has been added, and the presentation has been improved in genera
    corecore